[Das Benfordsche Gesetz, auch Newcomb-Benford’s Law (NBL), beschreibt eine Gesetzmäßigkeit in der Verteilung der führenden Ziffern von Zahlen in empirischen Datensätzen, wenn die zugrunde liegenden Werte eine ausreichend große Streubreite aufweisen.] https://de.wikipedia.org/wiki/Benfordsches_Gesetz
Das NBL gilt für reale Datensätze (damit sind hier solche gemeint, die keinen Manipulationen unterlagen), die genügend umfangreich sind und Zahlen in der Größenordnung von x x bis mindestens 10000 x 10000x aufweisen, Daten also, die einigermaßen weit verteilt (dispergiert) sind. Es besagt, dass die Auftretenswahrscheinlichkeit der Ziffernsequenzen in den Zahlen nicht gleichverteilt ist, sondern logarithmischen Gesetzen folgt. Das bedeutet, dass die Auftretenswahrscheinlichkeit einer Ziffernsequenz umso höher ist, je kleiner sie wertmäßig ist und je weiter links sie in der Zahl beginnt. Am häufigsten ist die Anfangssequenz „1“ mit theoretisch 30,103 %. Das NBL beruht auf der Gleichverteilung der Mantissen der Logarithmen der Zahlenwerte des Datensatzes. Der Grund für die erstaunlich weite Gültigkeit des NBL liegt an dem Umstand, dass viele reale Datensätze log-normalverteilt sind, also nicht die Häufigkeiten der Daten selbst, sondern die Größenordnungen dieser Daten einer Normalverteilung folgen. Bei genügend breiter Dispersion der normalverteilten Logarithmen (wenn die Standardabweichung mindestens etwa gleich 0,74 ist) kommt es dazu, dass die Mantissen der Logarithmen stabil einer Gleichverteilung folgen. Ist die Standardabweichung allerdings kleiner, sind auch die Mantissen normalverteilt, und das NBL gilt nicht mehr, zumindest nicht mehr in der dargestellten einfachen Form. Ist die Standardabweichung kleiner als 0,74, kommt es zu dem in der Statistik nicht allzu häufigen Effekt, dass sogar der jeweilige Mittelwert der Normalverteilung der Logarithmen die Auftretenshäufigkeit der Ziffernsequenzen beeinflusst. https://de.wikipedia.org/wiki/Benfordsches_Gesetz
Nun, was können Mathematiker - nicht erst seit Fibonacci?!
|