At its most basic level, the RAN architecture at the mobile network edge comprises a remote radio unit (RRU or RU) at the top of a cell tower that communicates with a baseband unit (BBU) located at the tower’s bottom. The RAN uses proprietary hardware and vendor-defined communication interfaces, and its software-driven functionality is tightly integrated inside the hardware.
While these traditional systems have worked well for MNOs, they have many drawbacks. Making any upgrade or change to the wireless network, even seemingly minor ones, requires replacing physical hardware throughout the network—a costly, manual, and time-consuming process. Moreover, the proprietary nature of the equipment and interfaces that connect the hardware locks MNOs into existing relationships with the vendor that originally supplied them.
Virtualizing the RAN and replacing proprietary interfaces with standards-based interfaces enables equipment interoperability and multivendor RAN deployments. This gives network operators more flexibility to pick and choose among best-of-breed solution providers. By opening the market, currently dominated by a handful of vendors, to new suppliers, open RAN can not only lower costs but also prompt greater innovation through competition, as well as allow MNOs to avoid restricted vendors.5 Additionally, because they allow operators to use software to push out network functions and intelligent automation, virtual architectures can speed the roll-out of new services that can help carriers better manage their networks, improving network performance.
Open RAN is not an entirely new idea; MNOs have discussed the concept of an open RAN architecture for decades. But despite open RAN’s appeal, adoption has hitherto been slow and met with skepticism due to technical engineering and integration challenges. Substantial confusion over the terminology and available technology options has also hindered adoption.
Now, however, open RAN’s momentum is growing as the ecosystem develops, partnerships form, suppliers ramp up investments, and operators commit to experimentation, trials, and deployments. Over the past several years, aggressive experimentation through both lab trials and live deployments are closing performance gaps between open and proprietary RAN solutions, steadily tearing down perceived barriers. Rising capital costs and national security concerns that further limit financial flexibility, as well as the rise of government policies to support vendor choice, are also accelerating the movement toward virtual and open RAN architectures. Finally, open RAN is riding the wave of several technology trends, including 5G, cloud virtualization, distributed edge computing, and artificial intelligence (AI)–driven automation. All of these factors can help push open RAN from just a cool idea toward reality.
https://www2.deloitte.com/global/en/insights/...-access-networks.html |