Beim Drüberfliegen sehe ich nur Kleinigkeiten, die aber ganz interessant sind und sich hauptsächlich auf die Forschungstruppe in Iowa und von Dr. Singh in Michigan beziehen.
Zunächst einmal hat SH wohl sein "independent laboratory in Coralville" aufgerüstet: Machinery and equipment $ 33,814. Diesen Posten gab`s vorher nicht.
Dann ist mir auch neu, dass "The Iowa team thoroughly tested its ability for hydrogen production using sunlight and water containing organics derived from biomass resources." Sie testen also auch mit wasserhaltigen organischen Stoffen aus Biomasse. Sieht mir nach der Möglichkeit aus, auch wasserhaltigen Bioabfall einzuspeisen.
Dann wird noch kurz eingegangen auf die CdTe-basierten Solarzellen, die ja beim NREL jetzt getestet werden sollen:
"... the Iowa research team has identified alternate solutions to successfully fabricate our second proprietary nanoparticle semiconductor unit at production-quality prototype scale. These solutions include pairing one of the SunHydrogen’s proprietary semiconductor unit on Silicon Heterojunction solar cells, Perovskite solar cells, or CdTe-based solar cells." (Übersetzung: Das Forschungsteam in Iowa hat jedoch alternative Lösungen für die erfolgreiche Herstellung unserer zweiten proprietären Nanopartikel-Halbleitereinheit im produktionsreifen Prototypmaßstab gefunden. Zu diesen Lösungen gehört die Kopplung einer der SunHydrogen-Halbleitereinheiten mit Silizium-Heteroübergangs-Solarzellen, Perowskit-Solarzellen oder CdTe-basierten Solarzellen.)
Sie versuchen den Wirkungsgrad zu maximieren:
The Iowa team recently had success in pairing one of SunHydrogen’s proprietary semiconductor units with Silicon and Perovskite cells and demonstrated solar hydrogen production. The team is currently optimizing this alternate approach to maximize solar-to-hydrogen efficiency using device housing developed by SunHydrogen’s industry partners.
Auch diese beiden Abschnitte im Blick auf das Team um Dr. Singh in Michigan fand ich interessant:
Led by Dr. Nirala Singh, one of the lead inventors on SunHydrogen Patent No. 9,593,053B1, the University of Michigan team is focused on understanding the requirements of the generator housing and optimizing and testing potential oxygen evolution and hydrogen evolution electrocatalysts to accelerate scaleup and increase efficiency of photoelectrochemically active heterostructures. In the past year, they have demonstrated deposition of oxygen evolution and hydrogen evolution catalysts through atomic layer deposition and tested these materials for their ability to catalyze oxygen evolution and hydrogen evolution. The hydrogen evolution catalysts match the best performing catalysts and can be deposited on our solar cell materials with low thickness to mitigate parasitic light absorption. The atomic layer deposited oxygen evolution catalyst did not match the necessary metrics for further evaluation. However, using a sputtering technique, they synthesized an oxygen evolution electrocatalyst that can match the state-of-the-art oxygen evolution catalysts in the open literature. With these two catalysts, the solar cell voltage provided upon illumination is sufficient to produce hydrogen at high rates. These catalysts are being integrated with the systems used at University of Iowa.
University of Michigan also identified membrane-to-light absorber integration strategies to help optimize the generator housing dimensions, in collaboration with InRedox. They evaluated the voltage losses in various potential systems to identify the most promising configurations and eliminate configurations that would result in significant energy losses. The most promising systems were sent to Ionomr Innovations and Chromis Technologies to integrate membranes for testing of energy losses and stability. A model to scale up to multi-wafer systems was developed and is being validated. This model incorporated the entire system including generator housing, oxygen evolution catalyst, and hydrogen evolution catalyst and also helps identify the most important components for further increasing hydrogen production efficiency.
|