Funktion Cholesterin ist ein lebensnotwendiges Lipid. Es ist Hauptbestandteil der Plasmamembran, wo es deren Stabilität erhöht und, zusammen mit Proteinen in der Zellmembran, an der Ein- und Ausschleusung von Signalstoffen beteiligt ist. Der Cholesteringehalt des menschlichen Körpers beträgt etwa 140 g. Da es nicht wasserlöslich ist, befinden sich über 95 % des Cholesterins intrazellulär. Im Blut wird es an Lipoproteine gebunden transportiert, die mit zunehmender Dichte als Chylomikronen, VLDL, LDL und HDL bezeichnet werden.
Cholesterin ist außerdem Vorstufe der Gallensäuren und Steroidhormone. Es wird durch das Cholesterin Seitenkettentrennungsenzym zu Pregnenolon umgewandelt, welches wiederum die Ausgangsverbindung für die Hormone/Corticoide (Testosteron, Östradiol, Cortisol, Progesteron und Aldosteron) und für die Gallensäuren (Cholanssäure und Cholsäure) ist.[2]
Ein Zwischenprodukt der Cholesterinbiosynthese, das 7-Dehydrocholesterin, ist das Provitamin zur Bildung von Vitamin D durch UV-Licht.
Neue Forschungen zeigen zudem, dass der Körper Cholesterin zur Biosynthese herzwirksamer Glykoside nutzt. Welche Bedeutung diese endogen synthetisierten Glykoside haben, ist noch weitgehend unbekannt.
Das Cholesterinmolekül ist evolutionsgeschichtlich sehr alt. Die Biosynthese des Moleküls funktioniert allerdings erst, seit Sauerstoff in der Atmosphäre vorhanden ist. In Bakterien und den Membranen von Mitochondrien findet sich daher kaum Cholesterin. Pflanzen und Pilze enthalten ebenfalls kein Cholesterin, dafür aber andere, strukturell ähnliche Sterole.
Synthese und Abbau [Bearbeiten]Cholesterin ist ein für Menschen und Tiere lebenswichtiges Zoosterin. Beim Menschen wird Cholesterin zum Großteil (90 %) im Körper selbst hergestellt (synthetisiert), beim Erwachsenen in einer Menge von 1 bis 2 g pro Tag, und nur zu einem kleinen Teil mit der Nahrung aufgenommen. Die Cholesterinresorption liegt im Durchschnitt bei 0,1 bis 0,3 g pro Tag und kann höchstens auf 0,5 g pro Tag gesteigert werden. Das entspricht 30 bis 60 % des in der Nahrung enthaltenen Cholesterins.
Beim Menschen sind die Leber und die Darmschleimhaut die Hauptorte der Cholesterinsynthese. Die Biosynthese des Moleküls erfolgt über viele Zwischenstufen aus der aktivierten Essigsäure, dem Acetyl-Koenzym A. Außer in Leber und Darm kann die Cholesterinbiosynthese mit wenigen Ausnahmen in fast allen Zellen des Körpers ablaufen. Das Gehirn synthetisiert das von ihm benötigte Cholesterin vollständig selbst, da dieses die Blut-Hirn-Schranke nicht passieren kann.
Organe mit hohem Cholesterinbedarf sind das Gehirn sowie die Steroidhormone produzierenden Organe (Nebennieren, Eierstöcke und Hoden). Etwa ein Viertel des gesamten Cholesterins ist im Gehirn enthalten, wo es vor allem in den lipidreichen Myelinscheiden der Axone vorkommt.[3]
Das Gleichgewicht zwischen benötigtem, selbst produziertem und über die Nahrung aufgenommenem Cholesterin wird über vielfältige Mechanismen aufrecht erhalten. Als wichtig kann dabei die Hemmung der HMG-CoA-Reduktase, des wichtigsten Enzyms der Cholesterinbiosynthese, durch Cholesterin gelten (noch stärker wird die HMG-CoA-Reduktase durch Lanosterol, eine Vorstufe von Cholesterin, gehemmt). Damit hemmen Produkte dieses Stoffwechselwegs (Cholesterinsynthese) „ihr“ Enzym; dies ist ein typisches Beispiel negativer Rückkopplung. Außerdem verkürzt sich die Halbwertszeit der HMG-CoA-Reduktase bei erhöhtem Lanosterolspiegel stark, da sie dann vermehrt an Insigs bindet, was schließlich zu ihrem Abbau im Proteasom führt. Es gibt noch viele andere, weniger direkte Regulationsmechanismen, die auf transkriptioneller Ebene ablaufen. Hier sind die Proteine SCAP, Insig-1 und -2 wichtig, die in Anwesenheit von Cholesterin, für das sie eine Bindungsstelle besitzen, über die proteolytische Aktivierung von SREBPs die Aktivität einer größeren Anzahl Gene regulieren. Auch Insulin spielt hier eine Rolle, da es u. a. die Transkription von SREBP1c steigert.
Die HMG-CoA-Reduktase, das Schlüsselenzym der Cholesterinbiosynthese, kann spezifisch und effektiv durch verschiedene Substanzen gehemmt werden (beispielsweise Statine, die als HMG-CoA-Reduktase-Hemmer eine bestimmte Klasse von Medikamenten darstellen). Über den LDL-Rezeptor wird die Aufnahme in die Zelle aktiviert.
Die Höhe des Cholesterinspiegels hängt vor allem von der körpereigenen Produktion ab und erst in zweiter Linie von der Zufuhr über die Nahrung. Daneben gibt es eine Vielzahl genetisch bedingter Hypercholesterinämien. Auch als Folge anderer Erkrankungen kann der Cholesterinspiegel erhöht sein (beispielsweise durch Hypothyreose, Niereninsuffizienz oder metabolisches Syndrom).
Cholesterin wird über die Leber ausgeschieden, indem es in Form von Gallensäuren über die Gallenwege in den Darm sezerniert wird. Diese Gallensäuren sind gleichzeitig für die Resorption wasserunlöslicher Nahrungsbestandteile, also auch Cholesterin, erforderlich. Cholesterin wird durch Gallensäuren emulgiert und im Dünndarm resorbiert. Dabei werden etwa 90 % der Gallensäuren wieder aufgenommen. Durch Einnahme von Medikamenten wie Cholestyramin, die Gallensäuren binden und die Wiederaufnahme damit erschweren, kann die Cholesterinausscheidung gesteigert werden. Allerdings wird die Senkung des Cholesterinspiegels durch Zunahme der LDL-Rezeptordichte auf Leberzellen und die damit gesteigerte Cholesterinaufnahme aus dem Blut in die Leber teilweise durch eine vermehrte Neusynthese ausgeglichen.
http://de.wikipedia.org/wiki/Cholesterin
Quellenangabe: wikipedia
|